Wednesday, 28 August 2013

How the brain remembers pleasure


Brain














Key details of the way nerve cells in the brain remember pleasure are revealed in a study by University of Alabama at Birmingham researchers published today in the journal Nature Neuroscience. The molecular events that form such “reward memories” appear to differ from those created by drug addiction, despite the popular theory that addiction hijacks normal reward pathways.

Brain circuits have evolved to encourage behaviors proven to help our species survive by attaching pleasure to them. Eating rich food tastes good because it delivers energy and sex is desirable because it creates offspring. The same systems also connect in our mind’s environmental cues with actual pleasures to form reward memories.

This study in rats supports the idea that the mammalian brain features several memory types, each using different circuits, with memories accessed and integrated as needed. Ancient memory types include those that remind us what to fear, what to seek out (reward), how to move (motor memory) and navigate (place memory). More recent developments enable us to remember the year Columbus sailed and our wedding day.

The study is the first to illustrate that reward memories are created by chemical changes that influence known memory-related genes in nerve cells within a brain region called the ventral tegmental area, or VTA. Experiments that blocked those chemical changes — a mix of DNA methylation and demethylation — in the VTA prevented rats from forming new reward memories.

Methylation is the attachment of a methyl group (one carbon and three hydrogens) to a DNA chain at certain spots (cytosine bases). When methylation occurs near a gene or inside a gene sequence, it generally is thought to turn the gene off and its removal is thought to turn the gene on. This back-and-forth change affects gene expression without changing the code we inherit from our parents. Operating outside the genetic machinery proper, epigenetic changes enable each cell type to do its unique job and to react to its environment.

Furthermore, a stem cell in the womb that becomes bone or liver cells must “remember” its specialized nature and pass that identity to its descendants as they divide and multiply to form organs. This process requires genetic memory, which largely is driven by methylation. Note, most nerve cells do not divide and multiply as do other cells. They can’t, according to one theory, because they put their epigenetic mechanisms to work making actual memories.

The brain’s pleasure center is known to proceed through nerve cells that signal using the neurochemical dopamine and generally is located in the VTA. Dopaminergic neurons exhibit a “remarkable capacity” to pass on pleasure signals. Unfortunately, the evolutionary processes that attached pleasure to advantageous behaviors also accidentally reinforced bad ones.

Addiction to all four major classes of abused drugs — psycho stimulants, opiates, ethanol and nicotine — has been linked to increased dopamine transmission in the same parts of the brain associated with normal reward processing. Cues that predict both normal reward and effects of cocaine or alcohol also make dopamine nerve cells fire as do the experiences they recall. That had led to idea that drug addiction must take over normal reward-memory nerve pathways.

Along those lines, past research has argued that dopamine-producing neurons in the VTA — and in a region that receives downstream dopamine signals from the VTA called the nucleus accumbens (NAC) — both were involved in natural reward and drug-addiction-based memory formation. While that may true to some extent, this study revealed that blocking methylation in the VTA with a drug stopped the ability of rats to attach rewarding experiences to remembered cues but doing so in the NAC did not.

0 comments:

Post a Comment