New
research in mice reveals why the body is so slow to recover from jet
lag and identifies a target for the development of drugs that could help
us to adjust faster to changes in time zone.
With funding from the Wellcome Trust and
F. Hoffmann La Roche, researchers at the University of Oxford,
University of Notre Dame and F. Hoffmann La Roche have identified a
mechanism that limits the ability of the body clock to adjust to changes
in patterns of light and dark. And the team show that if you block the
activity of this gene in mice, they recover faster from disturbances in
their daily light/dark cycle that were designed to simulate jet-lag.
Nearly all life on Earth has an internal
circadian body clock that keeps us ticking on a 24-hour cycle,
synchronising a variety of bodily functions such as sleeping and eating
with the cycle of light and dark in a solar day. When we travel to a
different time zone our body clock eventually adjusts to the local time.
However this can take up to one day for every hour the clock is
shifted, resulting in several days of fatigue and discombobulation.
In mammals, the circadian clock is
controlled by an area of the brain called the suprachiasmatic nuclei
which pulls every cell in the body into the same biological rhythm. It
receives information from a specialised system in the eyes, separate
from the mechanisms we use to ‘see’, which senses the time of day by
detecting environmental light, synchronising the clock to local time.
Until now, little was known about the molecular mechanisms of how light
affects activity in the SCN to ‘tune’ the clock and why it takes so long
to adjust when the light cycle changes.
To investigate this, the Oxford
University team led by Dr. Stuart Peirson and Prof. Russell Foster, used
mice to examine the patterns of gene expression in the SCN following a
pulse of light during the hours of darkness. They identified around 100
genes that were switched on in response to light, revealing a sequence
of events that act to retune the circadian clock. Amongst these, they
identified one molecule, SIK1, that terminates this response, acting as a
brake to limit the effects of light on the clock. When they blocked the
activity of SIK1, the mice adjusted faster to changes in light cycle.
Peirson explains: “We’ve identified a
system that actively prevents the body clock from re-adjusting. If you
think about, it makes sense to have a buffering mechanism in place to
provide some stability to the clock. The clock needs to be sure that it
is getting a reliable signal, and if the signal occurs at the same time
over several days it probably has biological relevance. But it is this
same buffering mechanism that slows down our ability to adjust to a new
time zone and causes jet lag.”
Disruptions in the circadian system have
been linked to chronic diseases including cancer, diabetes, and heart
disease, as well as weakened immunity to infections and impaired
cognition. More recently, researchers are uncovering that circadian
disturbances are a common feature of several mental illnesses, including
schizophrenia and bipolar disorder.
Russell Foster, Director of the recently
established Oxford University Sleep and Circadian Neuroscience
Institute supported by the Wellcome Trust, said: “We’re still several
years away from a cure for jet-lag but understanding the mechanisms that
generate and regulate our circadian clock gives us targets to develop
drugs to help bring our bodies in tune with the solar cycle.Such drugs
could potentially have broader therapeutic value for people with mental
health issues.”






0 comments:
Post a Comment